New integrable ( $$3+1$$ 3 + 1 )-dimensional systems and contact geometry
نویسندگان
چکیده
منابع مشابه
On Integrable Systems in 3-dimensional Riemannian Geometry
In this paper we introduce a new infinite dimensional pencil of Hamiltonian structures. These Poisson tensors appear naturally as the ones governing the evolution of the curvatures of certain flow of curves in three dimensional Riemannian manifolds with constant curvature. The curves themselves are evolving following arc-length preserving geometric evolutions for which the variation of the curv...
متن کاملIntegrable Systems in n-dimensional Riemannian Geometry
In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an n-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and an hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Letters in Mathematical Physics
سال: 2017
ISSN: 0377-9017,1573-0530
DOI: 10.1007/s11005-017-1013-4